Ordinal decompositions for preordered root systems
نویسندگان
چکیده
منابع مشابه
Ordinal decompositions for preordered root systems
In this paper, we explore the effects of certain forbidden substructure conditions on preordered sets. In particular, we characterize in terms of these conditions those preordered sets which can be represented as the supremum of a well-ordered ascending chain of lowersets whose members are constructed by means of alternating applications of disjoint union and ordinal sums with chains. These dec...
متن کاملUsing and Learning GAI-Decompositions for Representing Ordinal Rankings
We study the use of GAI-decomposable utility functions for representing ordinal rankings on combinatorial sets of objects. Considering only the relative order of objects leaves a lot of freedom for choosing a particular utility function, which allows one to get more compact representations. We focus on the problem of learning such representations, and give a polynomial PAC-learner for the case ...
متن کاملCoinduction for preordered algebra
We develop a combination, called hidden preordered algebra, between preordered algebra, which is an algebraic framework supporting specification and reasoning about transitions, and hidden algebra, which is the algebraic framework for behavioural specification. This combination arises naturally within the heterogeneous framework of the modern formal specification language CafeOBJ. The novel spe...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Ordinal Systems
Ordinal systems are structures for describing ordinal notation systems, which extend the more predicative approaches to ordinal notation systems, like the Can-tor normal form, the Veblen function and the Sch utte Klammer symbols, up to the Bachmann-Howard ordinal.-ordinal systems, which are natural extensions of this approach, reach without the use of cardinals the strength of the theories for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Pure and Applied Logic
سال: 2009
ISSN: 0168-0072
DOI: 10.1016/j.apal.2009.05.004